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Abstract

In this study, we propose a three-dimensional Medical
image classifier using Multi-plane and Multi-slice Trans-
former (M3T) network to classify Alzheimer’s disease (AD)
in 3D MRI images. The proposed network synergically com-
bines 3D CNN, 2D CNN, and Transformer for accurate AD
classification. The 3D CNN is used to perform natively 3D
representation learning, while 2D CNN is used to utilize the
pre-trained weights on large 2D databases and 2D repre-
sentation learning. It is possible to efficiently extract the lo-
cality information for AD-related abnormalities in the local
brain using CNN networks with inductive bias. The trans-
former network is also used to obtain attention relationships
among multi-plane (axial, coronal, and sagittal) and multi-
slice images after CNN. It is also possible to learn the ab-
normalities distributed over the wider region in the brain
using the transformer without inductive bias. In this ex-
periment, we used a training dataset from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) which contains a
total of 4,786 3D T1-weighted MRI images. For the valida-
tion data, we used dataset from three different institutions:
The Australian Imaging, Biomarker and Lifestyle Flagship
Study of Ageing (AIBL), The Open Access Series of Imag-
ing Studies (OASIS), and some set of ADNI data indepen-
dent from the training dataset. Our proposed M3T is com-
pared to conventional 3D classification networks based on
an area under the curve (AUC) and classification accuracy
for AD classification. This study represents that the pro-
posed network M3T achieved the highest performance in
multi-institutional validation database, and demonstrates
the feasibility of the method to efficiently combine CNN and
Transformer for 3D medical images.

1. Introduction

Convolutional Neural Networks (CNN) have been es-
tablished with a dominant performance in the computer
vision field [35]. They have showed high feasibilities in
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Figure 1. The overall framework of three-dimensional Medical
image classifier using Multi-plane and Multi-slice Transformer
network (M3T)

various computer vision tasks such as image classification
[26, 28, 35, 65], object detection [38, 53, 54], and seman-
tic segmentation [8, 40, 55]. In addition, these CNN-based
architectures have been widely applied to the medical im-
age analysis field [39] in the various modalities such as X-
ray [27], CT [24], MRI [20, 30], and Ultrasound [12], and
in various dimension signals from 2D to 3D medical im-
ages [4,74]. Especially, to analyze 3D medical images, var-
ious approaches have been established based on 2D and 3D
CNN networks [4,47,56,74]. The 2D-based methods have
advantages from a pre-trained model using large-scale 2D
natural images, while the 2D representation learning has a
disadvantage for analysis of 3D image contexts [47,50, 74].
On the other hand, The 3D-based methods can learn na-
tively 3D representations [13,44,57]. However, there are
few publicly available 3D databases for pretraining [61,62].
Furthermore, the 3D model has lacks of ability to build deep
layers because it requires large parameters and computa-



tion costs [64, 72]. There are trade-offs between 2D and
3D representation learning on 3D medical images: these re-
searches select either 2D or 3D CNN models [74].

Meanwhile, transformer networks have been widely
used not only in natural language processing [16, 69] but
also in computer vision processing [5, 18,32]. These net-
works have a wider receptive field, which can cover a large
area of images and grow linearly with the depth of the net-
work, while the convolution-based networks have a limited
receptive field. More recently, Vision Transformer (ViT)
[18] which consists of a pure-transformer-based architec-
ture could achieve reasonable performance on image clas-
sification. Furthermore, ViT achieves comparable results
to conventional CNN-based methods using very large-scale
databases, indicating that the transformer model is compet-
itive with the other state-of-the-art techniques. However,
when the models are trained with smaller dataset, the CNN-
based method tends to show higher accuracy. This indi-
cates that the pure-transformer-based architectures struggle
to learn meaningful representations when trained on small
datasets due to the low abilities of inductive biases pos-
sessed in CNN architectures [18, 32]. Especially for 3D
medical images, the number of datasets is relatively lower
than those of other domains because of hardly accessibili-
ties by ethical issues [61, 62], large computational costs by
high dimensionalities [64], expensive annotation, and se-
vere class-imbalance problems [72]. Therefore, the pure-
transformer-based method has not been yet widely used in
analyzing 3D medical images.

In fact, there are some trade-offs between CNN and
Transformer: CNN'’s strong inductive biases and localities
to achieve high performance even with minimal data, yet
these biases may limit the CNN when there are high dimen-
sional data to cover with the low receptive field [32, 79].
On the other hand, a transformer with minimal inductive
biases, which can prove to limit in small datasets, but the
bias enables the architecture to cover a large area with a
high receptive field [14, 18, 71]. More recently, the hy-
brid network combining CNN and transformer has been re-
searched to take advantage of both methods and achieved
more competitive performance compared to conventional
methods [14,71,79]. However, these hybrid networks only
combine 2D CNN and transformer for 2D images, while
our method combines 2D, 3D CNN and transformer for 3D
medical images.

Alzheimer’s Disease (AD) is progressive neurological
illness that causes memory loss and makes it difficult to
communicate and perform daily tasks like walking and
speaking [43]. The progression of AD often involves struc-
tural changes such as cerebral cortex atrophy, ventricle area
enlargement and hippocampus volume shrinkage [1, 25].
Fig. 2 shows the brain image of normal control and AD
patients. Therefore, 3D MRI images has been widely used
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Figure 2. Comparison of a normal control brain (left) and struc-
tural changes by degeneration from severe Alzheimer’s disease
(right)

to analyze AD-related abnormalities [63]. However, it can
be challenging for doctors to analyze large and complex
MRI images and to extract important information manually.
Moreover, due to various inter- or intra-operator variability
issues, manual analysis of brain 3D MRI is time-consuming
and vulnerable to misdiagnosis [15].

The atrophy of cerebral cortex of AD patients occurs in
the cortex distributed throughout the brain. So, transformer
architecture with a wide receptive field is suitable to detect
this cortex change. On the other hand, enlargement of ven-
tricle area and hippocampus shrinkage occur in local area
of brain. A CNN network with inductive bias is suitable for
these local hippocampal changes. Accordingly, we used a
hybrid network combining CNN and transformer networks
in this study. Furthermore, transformer network can analyze
various range relationship from adjacent to far away images
because it has permutation -invariant property [18].

In this study, we propose a three-dimensional Medical
image classifier using Multi-plane and Multi-slice Trans-
former (M3T) network to analyze AD in 3D MRI images.
Our goal is to classify Alzheimer’s disease (AD) with nor-
mal control (NC) in the 3D MRI images. The overall archi-
tecture of the proposed M3T model is shown in Fig. 1. The
main contributions of this study are as follows.

First, our proposed M3T successfully combines CNN
and transformer architectures for 3-dimensional image clas-
sification. CNN architecture with inductive bias enables
our network to efficiently analyze local features related to
abnormalities of AD. The transformer with a large recep-
tive field efficiently combines multi-plane (coronal, sagittal,
and axial) and multi-slice tokens from CNN and captures a
long-range relationship in 3D MRI images. M3T achieves
higher performance compared with pure CNN and trans-
former methods.

Second, we efficiently combined 2D and 3D CNN ar-
chitectures for 3D MRI images using hybrid networks and
multi-plane, -slice feature extraction. Using 3D CNN, 3D
representation features can be obtained to analyze 3D AD-



related abnormalities. In addition, cross-slice and cross-
plane 2D features used in the 2D CNN process can be ex-
tracted from the 3D images. Using 2D CNN, we use the
large-database pre-trained network, which ensures stable
training with a small number of medical images. For these
reasons, our M3T obtain higher performance compared to
the approaches that do not combined 2D or 3D CNN net-
works.

Third, we visualize the activated area in 3D MRI im-
ages the transformer interpretability methods [7]. These re-
sults provide explanation and interpretation of AD-related
abnormalities in 3D MRI images. Furthermore, the acti-
vated area shows where the network focused on AD-related
features. From these visualization results, the regions an-
alyzed by our proposed largely coincide with the regions
mainly shrunk by Alzheimer’s disease.

2. Related Works
2.1. Transformer for Computer Vision

With successful application of transformer in the NLP
field [16, 69], many studies have been established to lead
to the transformer networks for vision tasks. The stud-
ies such as ViT [18] and DeiT [66] for image classifica-
tion, DETR [5] for objection detection, ViViT [2] and VTN
[46] for video analysis, and transformer-based segmenta-
tion [68]. Especially, ViT solved the first problem by sim-
ply dividing the image into non-overlapping patches and
using each patch as a visual token. ViT shows that the
transformer model trained on a large datasets can achieve
very competitive performance for image analysis. How-
ever, when there is not enough training data, ViT does not
achieve high performance because there is very low induc-
tive bias. DeiT [06] alleviates the problem by introducing
a regularization and augmentation pipeline into ImageNet-
1K. In addition, the transformer methods have been studied
in medical image segmentation [22, 70], 2D medical image
classification [42], image denoising [4 1] and image recon-
struction [33].

To take advantage of CNN and transformer, the hybrid
networks combining both networks have been demonstrated
in the computer vision field [14, 71, 79]. Through vari-
ous ablation studies, the hybrid of CNN and transformer
achieved the competitive performance among combinations
of other networks including multi-layer perceptron in com-
puter vision field. These results indicates that the combina-
tion of CNN and transformer with different roles can per-
form the vision tasks efficiently.

2.2. 3D Medical Image Analysis

The 2D CNN models have been widely used in 3D med-
ical image analysis. The multi-plane representation meth-
ods are proposed where images from coronal, sagittal and

axial planes, are treated as the three channels of 2D input
[45,51,56]. This is empirically effective, but the weakness
of the approach is that the three channels are not spatially
aligned. Another approach uses the multi-slice-based meth-
ods where the three multi-slice images are regarded as the
multi channels in 2D inputs [4, 1 7,48,75]. In addition, there
are studies using both multi-plane and multi slices [50, 78].
However, these networks use only 2D CNN which cannot
consider native 3D representation features.

Instead of the 2D CNN approaches, there are many meth-
ods using 3D CNN networks for 3D medical image analy-
sis [13,44,57]. Compared to the limitation of 2D CNN net-
works in 3D representational learning, the 3D CNN-based
methods are able to learn 3D representation features. There-
fore, the 3D CNN-based approaches are generally better at
tasks requiring analysis such as 3D organs in medical im-
ages. However, it is very difficult to obtain large-scale uni-
versal 3D pre-training. For this reason, efficient training of
3D networks is a pain point for 3D approaches. In addition,
3D CNN has lack of ability to build deep layers because
it requires large parameters and computation costs, which
causes low receptive field and has low ability to analyze a
large object in 3D medical images.

To overcome the limitation of both models, we com-
bine 2D approaches that analyze multi-plane and multi-slice
images with 3D CNN methods that have 3D representa-
tion learning [74]. In addition, we use a transformer net-
work that effectively analyzes the long-range relationship
to cover the multi-plane and multi-slice features.

2.3. Alzheimer’s Disease Classification

There have been deep learning-based AD classification
methods. 3D VGGNet [37], ResNet [31, 34, 37, 73] and
densenet [58] are used to classify AD scans. In this work,
some well-known baseline 2D deep architectures, such as
VGGNet and ResNet , were converted to their 3D coun-
terparts, and the classification of AD was performed using
MRI data. In addition, an auto-encoder based method to
derive an embedding from the input features of 3D patches
is demonstrated [36]. The combination stacked recurrent
neural network with 3D CNN layers are developed for AD
classification using MRI data [21]. Deep 3D CNN meth-
ods also are studied using 3D medical image for AD clas-
sification. Most of the researchers have used CNN-based
networks [19,77].

3. Methods
3.1. Proposed Network: M3T

To establish our model design, we combined various
deep learning structures including 3D CNN, 2D CNN, and
Transformer networks. The detailed architecture of M3T is
shown in Fig. 3. M3T consists of five main blocks: 1) a 3D
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Figure 3. Detailed architecture of our proposed M3T. (a) 3D CNN model part in M3T. (b) Extraction of Multi-plane and Multi-slice images
part (c) 2D CNN model and non-linear projection part in M3T. (d) Position and Plane embedding part. (¢) Transformer encoder part.

CNN block to obtain natively 3D representation features, 2)
extraction block of multi-plane and multi-slice tokens from
3D representation features, 3) 2D CNN to utilize the pre-
trained weights on a large 2D database and 2D represen-
tation features with non-linear projection network, 4) em-
bedding block to retain position and plane information for
multi-plane and -slice tokens, and 5) transformer network to
obtain overall relationship among multi-plane (axial, coro-
nal and sagittal) and multi-slice images with positional and
plane embedding.

3.2. 3D Convolutional Neural Network Block

To obtain 3D representation features, we apply 3D CNN
block to the MRI image I € REXWXH where image length
L, width W and height H are all the same. The 3D CNN
block Dy, : REXWxH _y RCaxLxWXH ¢qngjsts of two
layers of 5 x 5 x 5 3D CNN layer with batch normaliza-
tion and ReL.U activation (C' is channel number). After the
3D CNN block is applied into the input image I, the 3D
representation features X is calculated.

X = Dyq(I). (1

The spatial size of X € RE3axLxWxH j5 same with the
input I. Fig. 3(a) presents the detailed architecture of the
3D CNN block to obtain 3D representation features.

3.3. Extraction of Multi-plane, Multi slice images

After using 3D CNN block into the input image, the
multi-plane and multi-slice image features is extracted

from the 3D representation features X. The features
are calculated from the extraction operator E.  The
operator consists of coronal features extractor E.,.
RCO3axLXWxH _y RC3axNXxWxH sagittal features extrac-
tor Egqg : ROsaXIXWxH _y RCsaxLXNXH ‘and axial fea-
tures extractor E,, : RCsaxLXWxH _, RCaaxLxWxN 44
below Eq. (2).

E =

[Ecorv Esag, Eam]- (2)

Using the extractor E, multi-plane and multi-slice fea-
tures S are calculated from the 3D representation features
X:

S = [Scora Ssagv Saz]a (3)

where the features consist multi-plane image slice feature
from Eq. (3): Coronal slice feature S.,, € RCsa*NxWxH_
sagittal slice feature Sy,, € RC2a*LXNXH “and axial fea-
ture S,, € RE3aXLXWXN Because feature width, length
and height are all same, concatenate and feature reshape
process: RCsaxLxWxH _y RINXC3axLxL can be applied
into all the extracted features S. Fig. 3(b) shows the detailed
architecture of the extraction block to acquire the features.

3.4. 2D Convolutional Neural Network Block

The 2D CNN block process consists of two-parts: pre-
trained 2D CNN part and non-linear projection part. First,
the weight shared 2D CNN Dy, R3NXCsaxLxL _y
R3N*C2a (Cy, is out channel size of 2D CNN) is applied



to the reshaped features S € R3V*CsaxLXL The 2D CNN
performs global average pooling like ResNet network [26].

K = D3q4(S), S

where 2D CNN processed features K = R3V*C2a Af-
ter that, we apply non-linear projection layer D,
R3N*C2a _y R3NXd widely used in various self-supervised
learning for projection [10, 11, 76]. The non-linear pro-
jection consists of two layers MLP with ReL.U activation
between them. Using the layer, channel number Cy is
changed to projection dimension d. Multi-plane and multi-
slice image tokens T € R3*¥*9 from 2D CNN and non-
linear projection layers.

T = D, (K), 5)

where the tokens T = [T, Tsag, Taz], coronal slice to-
ken T, € RV*? sagittal slice token Tsag € RN*4 and
axial slice token T, € RV*4

Fig. 3(c) shows the detailed process of 2D CNN block
and non-linear projection.

3.5. Position and Plane Embedding Block

After calculating the multi-plane and multi-slice image
tokens, position and plane embedding tokens are added to
the image tokens from non-linear projection layer, as it can
be shown Fig. 3(d). First, the learnable one-dimensional
position embedding tokens P o5 are applied to the embed-
ding scheme to retain positional information. In addition,
we add the plane embedding Py, to give information indi-
cating which plane these tokens belong to.

A learnable classification token z.; is prepended to these
tokens, similar to ViT class token. Plane separation tokens
Zsep are also appended between each plane token and the
end of the tokens, similar to BERT sep token. The final
token used in the transformer encoder Zg € RGN +4)xd jg
below:

1 2 N
ZO = [ZClS? Tcor7 Tcor’ b Tcor’ ZSEP?
1 2 N
Tsag) Tsa97 AR Tsag7 Zsepv (6)

1 2 N
Taw’ Taw7 ot Ta:m ZSEP] + PPOS + Pplna

where 2.5 € RY, 250, € RY, Ppos € REIHIXE P e
RGBS+4)xd

3.6. Transformer Block

Fig. 3(e) shows the transformer block architectures. The
image tokens from the embedding process are then passed
through consisting of a sequence of K transformer lay-
ers. Each layer comprises of Multi-Headed Self-Attention
(MSA) [69], layer normalization (LIN), and MLP blocks
as follows:

Z;, = MSA(LN(Zy,) + Zy, (7)

Zj+1 = MLP(LN(Z}) + Zj, (8)

The MLP layer consists of two linear projections sep-
arated by a GELU activation function and the token-
dimensionality, d, remains fixed throughout all layers, as
shown in Fig. 3(e). Finally, a linear classifier is used to clas-
sify the encoded input based on the MLP head: 2% ¢ R

cls
There are two final categorization classes: NC and AD.

4. Experiments
4.1. Experimental dataset

In this study, we have acquired a training dataset from
the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
for the training process. The number of the total training
dataset is 4,786, including 3,174 NC and 1,612 AD cases.
All MR images were obtained using 1.5T or 3T MR system,
and 3D T1-weighted MRI images that have various matrix
sizes, voxel spacing, and field of view (FOV). During the
training, 20% of the total training dataset was used for the
validation dataset, which was a patient-based random split.

To evaluate the performance of the various deep learning
models, test datasets were acquired from three institutions:
ADNI, Australian Imaging, Biomarker and Lifestyle Flag-
ship Study of Ageing (AIBL), and The Open Access Series
of Imaging Studies (OASIS). Especially, the test database
from ADNI was totally separated from the training dataset.
The ADNI test dataset includes a total of 751 cases which
consist of 509 NC and 242 AD cases. The AIBL dataset
contains a total of 817 cases which consist of 697 NC and
120 AD cases. The OASIS dataset consists of a total of
509 cases which consist of 323 NC and 206 as shown.
The dataset from the three institutions requires an insti-
tutional approval process. Although they were collected
with approval from the Institutional Review Board, all the
databases should not be shared without permission and only
be used by authorized researchers for research purposes.

4.2. Implementation details

We apply the same data pre-processing to normalize and
standardize MR images from a multi-institutional database.
First, we used N4 algorithm [67] to correct the intensity
inhomogeneity. Next, skull stripping algorithm was per-
formed using HD-BET network [29]. Then, we resized
the images to have the same voxel spacing (1.75mm X
1.75mm x 1.75mm) and matrix size (128 x 128 x 128).
Lastly, we normalized image intensities of all the voxels us-
ing the zero-mean unit-variance method.

We applied 3D CNN block to the the pre-processed input
data. The 3D CNN took of size 128 x 128 x 128 and con-



Model name Params ADNI AIBL OASIS
AUC Accuracy | AUC Accuracy | AUC Accuracy

3D ResNet50 46.23M 0.9226 | 0.8868 0.8589 | 0.9106 0.8175 | 0.7996
3D ResNet50+Transformer 51.65M 0.9351 | 0.9161 0.8698 | 0.9094 0.8504 | 0.8053
3D ResNet101 85.33M 0.9355 | 0.8908 0.8832 | 0.9168 0.8623 | 0.8147
3D ResNet101+Transformer 90.75M 0.9528 | 0.9148 0.9012 | 0.9143 0.8652 | 0.8185
3D ResNet152 117.54M | 0.9356 | 0.8961 0.8718 | 0.8996 0.8404 | 0.8015
3D ResNet152+Transformer 122.96M | 0.9387 | 09134 0.9071 | 0.9155 0.8385 | 0.8015
3D DenseNet201 25.60M 0.9530 | 0.9201 0.8975 | 0.9241 0.8604 | 0.8204
3D DenseNet201+Trasnformer | 30.95M 0.9435 | 0.9041 0.9179 | 0.9253 0.8451 | 0.8223
3D ViT 33.87TM 0.8851 | 0.8349 0.8173 | 0.8739 0.8379 | 0.7996
MRNet 24.75M 0.9405 | 0.9014 0.9050 | 0.9155 0.8538 | 0.7996
13D 12.30M 0.9276 | 0.8921 0.8639 | 0.8984 0.8457 | 0.8034
MedicalNet 46.19M 0.9522 | 0.9081 0.9016 | 0.8984 0.8861 | 0.8261
FCNlinksCNN 12.84M 0.9489 | 0.9081 0.9104 | 0.9155 0.8495 | 0.8015
M3T (Ours) 29.12M | 0.9634 | 0.9321 0.9258 | 0.9327 0.8961 | 0.8526

Table 1. Comparison with various 3D classification networks on multi-institutional Alzheimer’s disease database.

volved them into 3D representation features with 32 chan-
nels. In addition, we used ImageNet pre-trained ResNet50
network [26] for 2D CNN block. The number of features
in first MLP layer is 512, and the number of final features
is 256. The number 256 is same with projection dimension
(attention dimension) d used in the transformer. The num-
ber of transformer layers is 8. The hidden size and MLP
size are 768, and the number of heads = 8.

We implemented M3T using a Pytorch library [49]. M3T
was trained using an Adam optimizer with 5; = 0.9 and
B2 = 0.999 for 50 epochs with a learning rate of 0.00005,
and the batch size is 4. For binary classification (AD and
NC), we used binary cross-entropy loss. The training took
approximately 20h using NVIDIA NVIDIA TITAN RTX
GPU.

Two metrics including an area under curve (AUC) and
accuracy were used to quantitatively evaluate the perfor-
mance of classification algorithm.

4.3. Comparison study results

We compared M3T with conventional 3D classification
methods based on 3D ResNet (50, 101, 152) [26], 3D
DenseNet121 [28] because they have been widely used for
AD classification [19,31,34,37,58,73,77]. We also com-
pared 13D [6] , MRNet [4], MedicalNet [9], and FCN-
linksCNN [52]. The MRNet used in this experiment was
based on 2D ResNet50 because it has higher performance
than using AlexNet. I3D and MedicalNet used weights
trained on Kinetics and 23 medical databases, respectively.
The other networks did not use the pre-trained weights.

In this experiment, we added a hybrid network combin-
ing some 3D CNN networks with a transformer. The trans-
former used 3D feature tokens after the 3D CNN. In ad-

dition, we implemented 3D ViT [18] which is composed
of pure-transformer networks. In this model, the sequence
in transformer is applied extracted 3D patch embedding,
which size is 16 x 16 x 16, and projection dimension is
512.

The quantitative performance is presented in Table 1
which shows AUC, Accuracy values of AD classification
from multi-institutional datasets. M3T achieves the highest
values of the metrics compared to the other methods. Ex-
cept for DenseNet121 network, the performances of hybrid
models combining CNN and transformer are also higher
than plain 3D CNN models, which highlights the impor-
tance of transformer networks in classifying AD.

In addition, the 3D ViT has lower performance than that
of the other algorithms. Although the network achieves high
performance in the experiments using a very large database,
the pure-transformer networks obtain low performance in
our experiment with a small amount of data. On the other
hand, Our proposed M3T using a hybrid network achieves
competitive performance in the low amount of medical im-
ages.

4.4. Ablation study results

To evaluate the degree to which each block of the M3T
network affects the performance, we compared the original
M3T model with 3 models as follows: 1) M3T without ini-
tial 3D CNN block, 2) M3T without 2D CNN block and
3) without Transformer block. Table 2 shows the perfor-
mance comparison results. Because of the number of pa-
rameters of the two-layer projection that directly converts
the 2D multi-plane images into a one-dimensional vector,
the total number of parameters in the ‘w/o 2D CNN blocks’
model is different from a value subtracting that of the 2D



Model Params ADNI AIBL OASIS

AUC Accuracy | AUC Accuracy | AUC Accuracy
w/o 3D CNN blocks 28.98M | 0.9515 | 0.9228 0.8896 | 0.9168 0.8750 | 0.8242
w/o 2D CNN blocks 29.67TM | 0.9236 | 0.8961 0.8617 | 0.8898 0.8340 | 0.8147
w/o Transformer blocks | 24.91M | 0.9445 | 0.9081 0.9052 | 0.9131 0.8727 | 0.8336
M3T (Ours) 29.12M | 0.9634 | 0.9321 0.9258 | 0.9327 0.8961 | 0.8526

Table 2. Quantitative comparison of AD classification using 4 different models of M3T to evaluate the degree to which each block of the

M3T network affects the performance.

Data extraction scheme Params ADNI AIBL OASIS

AUC Accuracy | AUC Accuracy | AUC Accuracy
Single-Slice, Multi-Plane | 29.09M | 0.9086 | 0.8588 0.8640 | 0.8152 0.8152 | 0.7731
Multi-Slice, Coronal 29.11M | 0.9496 | 0.9134 0.9101 | 0.9094 0.8692 | 0.8185
Multi-Slice, Sagittal 29.11M | 0.9295 | 0.8975 0.8776 | 0.9033 0.8691 | 0.8223
Multi-Slice, Axial 29.11M | 09541 | 09161 0.8617 | 0.9070 0.8760 | 0.8336
Multi-Slice, Multi-Plane | 29.12M | 0.9634 | 0.9321 0.9258 | 0.9327 0.8961 | 0.8526

Table 3. Quantitative comparison of AD classification using 5 different models of M3T to evaluate multi-slice and multi-plane image

extraction.

CNN from that of the M3T. It represents that the hybrid
model combining all blocks archives the best performance.
Although the order of performance is M3T without initial
3D CNN block, without transformer block, and without 2D
CNN block, it shows that all the blocks are important to
classify AD in 3D MRI images.

Next, to analyze the importance of the multi-plane and
multi-slice features-based method, we compared the M3T
with 4 models as follows: 1) Multi-plane but single-slice,
2) Multi-slice but only coronal plane, 3) only sagittal plane
and 4) only axial plane. In Table 3, M3T which uses Multi-
plane and Multi-slice has the highest accuracy results com-
pared to other models. It represents that the multi-plane
and multi-slice extraction is very important to analyze the
3D MRI images. In addition, in single plane experiment
cases, the axial and coronal-based model has higher per-
formance than the sagittal-based model. Considering clini-
cians mainly analyze the ventricle enlargement in the axial
or coronal planes, and hippocampus atrophy in the coronal
plane [59,60], M3T has different abilities to analyze in each
plane. However, when considering the highest performance
of the multi-plane-based model, we can observe of the im-
portance to use all of the three planes in classifying 3D MRI
images.

4.5. Visualization results

We visualize the activated area of our M3T network
based on transformer interpretability technique [7]. Fig. 4
shows an AD-related activation map in 3D MRI images of
multi-institutional datasets. The activated maps are mainly
focused on hippocampus, ventricle, and cerebral cortex ar-
eas. Especially, the axial image of Fig. 4(d) shows that M3T

mainly focuses on the severely contracted cortex region in
the circle annotated area. It can be seen that M3T efficiently
analyzes brain structural changes that occur mainly in AD
patients. On the other hand, Fig. 5 shows that the heatmap
areas are widely distributed on the brain. It means that AD-
related abnormalities throughout the brain can be analyzed
by our proposed model. The wide activated areas are one
of the advantages of the transformer networks with a high
receptive field.

Fig. 6 shows the average activation map of all AD cases
in 3D MRI template. The heatmap focuses mainly on the
hippocampus area of the coronal plane, and the ventricle re-
gion of the axial domain. Interestingly, the right hippocam-
pus is more focused than the left hippocampus in Fig. 6,
it was studied that shrinkage of the right hippocampus oc-
curred more in the brain of AD patients [3,23]. It shows that
M3T successfully focuses on AD-related structural changes
in the actual brain.

5. Conclusion

In this paper, we proposed a 3D medical image classi-
fication method, called M3T, that uses a multi-plane and
multi-slice transformer for Alzheimer’s disease analysis.
Our proposed method combines 2D CNN, 3D CNN, and
transformer networks. Experimental results show that our
proposed M3T achieves higher performance compared to
conventional 3D image classification network in multi-
institutional test datasets. The visualization results using the
transformer interpretability technique also show that M3T
can visualize the AD-related regions of 3D MRI images,
and the activated areas are strongly correlated with AD-
related region studies in clinical research.
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Figure 5. AD-related visualization case in which our network an-
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